المرجحة جنون الحركة من المتوسط ، توقعات
أمثلة حساب التوقعات ألف - 1 طرق حساب التنبؤات تتوفر 12 طريقة لحساب التنبؤات. معظم هذه الأساليب توفر مراقبة محدودة للمستخدم. على سبيل المثال، قد يتم تحديد الوزن الذي تم وضعه على البيانات التاريخية الحديثة أو النطاق الزمني للبيانات التاريخية المستخدمة في الحسابات. وتظهر الأمثلة التالية طريقة الحساب لكل طريقة من أساليب التنبؤ المتاحة، بالنظر إلى مجموعة متطابقة من البيانات التاريخية. وتستخدم الأمثلة التالية نفس بيانات المبيعات لعامي 2004 و 2005 لإنتاج توقعات مبيعات عام 2006. بالإضافة إلى حساب التنبؤات، يتضمن كل مثال توقعات عام 2005 المحاكية لفترة استبقاء مدتها ثلاثة أشهر (خيار المعالجة 19 3) والتي تستخدم بعد ذلك لنسبة الدقة ومتوسط حسابات الانحراف المطلق (المبيعات الفعلية مقارنة بالتوقعات المحاكية). 2.A معايير تقييم الأداء المتوقعة اعتمادا على اختيارك لخيارات المعالجة وعلى الاتجاهات والأنماط الموجودة في بيانات المبيعات، فإن بعض أساليب التنبؤ ستؤدي أداء أفضل من غيرها بالنسبة لمجموعة بيانات تاريخية معينة. قد لا تكون طريقة التنبؤ المناسبة لمنتج واحد مناسبة لمنتج آخر. ومن غير المرجح أيضا أن تظل طريقة التنبؤ التي توفر نتائج جيدة في مرحلة واحدة من دورة حياة المنتجات ملائمة طوال دورة الحياة بأكملها. يمكنك الاختيار بين طريقتين لتقييم الأداء الحالي لطرق التنبؤ. وهي تعني الانحراف المطلق (ماد) ونسبة الدقة (بوا). يتطلب كل من أساليب تقييم الأداء هذه بيانات مبيعات تاريخية لمستخدم محدد الفترة الزمنية. وتسمى هذه الفترة من الزمن فترة الاستيعاب أو الفترات المناسبة على أفضل وجه (بف). وتستخدم البيانات في هذه الفترة كأساس لتوصية أي من أساليب التنبؤ التي ستستخدم في وضع توقعات التوقعات التالية. هذه التوصية خاصة بكل منتج، وقد تتغير من جيل واحد إلى آخر. وتظهر طرائق تقييم أداء التنبؤات في الصفحات التالية لأمثلة أساليب التنبؤ الإثني عشر. A.3 الطريقة 1 - النسبة المئوية المحددة خلال العام الماضي تضاعف هذه الطريقة بيانات المبيعات عن السنة السابقة بواسطة عامل محدد للمستخدم على سبيل المثال، 1.10 لزيادة 10، أو 0.97 ل 3 انخفاض. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى العدد المحدد من الفترات الزمنية لتقييم أداء التنبؤ (خيار المعالجة 19). A.4.1 نطاق حساب التنبؤات من تاريخ المبيعات لاستخدامها في حساب عامل النمو (خيار المعالجة 2 أ) 3 في هذا المثال. مجموع الأشهر الثلاثة الأخيرة من عام 2005: 114 119 137 370 مجموع نفس الأشهر الثلاثة من العام السابق: 123 139 133 395 العامل المحسوب 370395 0.9367 حساب التوقعات: يناير 2005 المبيعات 128 0.9367 119.8036 أو حوالي 120 فبراير 2005 المبيعات 117 0.9367 109.5939 أو حوالي 110 مارس 2005 المبيعات 115 0.9367 107.7205 أو حوالي 108 A.4.2 حساب التوقعات المحسوبة بلغ ثلاثة أشهر من عام 2005 قبل فترة الاستحواذ (يوليو وأغسطس وسبتمبر): 129 140 131 400 اجمالي نفس الأشهر الثلاثة السنة السابقة: 141 128 118 387 المحسوب عامل 400387 1.033591731 حساب توقعات المحاكاة: أكتوبر 2004 المبيعات 123 1.033591731 127.13178 نوفمبر 2004 المبيعات 139 1.033591731 143.66925 ديسمبر 2004 المبيعات 133 1.033591731 137.4677 A.4.3 النسبة المئوية لحساب دقة الحساب (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 حساب الانحراف المطلق (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 الطريقة الثالثة - السنة الماضية لهذا العام تقوم هذه الطريقة بنسخ بيانات المبيعات من السنة السابقة إلى السنة التالية. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المحددة لتقييم أداء التنبؤ (خيار المعالجة 19). A.6.1 حساب التنبؤ عدد الفترات التي يتعين إدراجها في المتوسط (خيار المعالجة 4 أ) 3 في هذا المثال بالنسبة لكل شهر من التوقعات، متوسط بيانات الأشهر الثلاثة السابقة. توقعات كانون الثاني / يناير: 114 119 137 370، 370 3 123.333 أو 123 توقعات شباط / فبراير: 119 137 123 379، 379 3 126.333 أو توقعات 126 آذار / مارس: 137 123 126 379، 386 3 128.667 أو 129 ألف -6-2 حساب التوقعات المحاكاة مبيعات تشرين الأول / أكتوبر 2005 (129 140 131) 3 133.3333 تشرين الثاني / نوفمبر 2005 المبيعات (140 131 114) 3 128.3333 كانون الأول / ديسمبر 2005 المبيعات (131 114 119) 3 121.3333 ألف -6.3 النسبة المئوية لحساب حساب الدقة (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 ألف -6.4 المتوسط المطلق حساب الانحراف (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 الطريقة 5 - التقريب الخطي يحسب التقريب الخطي اتجاها يستند إلى نقطتي بيانات تاريخ المبيعات. وتحدد هاتان النقطتان خط اتجاه مستقيمي متوقع في المستقبل. استخدم هذه الطريقة بحذر، حيث أن التوقعات طويلة المدى تستفيد من التغييرات الصغيرة في نقطتي بيانات فقط. تاريخ المبيعات المطلوب: عدد الفترات التي يجب تضمينها في الانحدار (خيار المعالجة 5 أ)، بالإضافة إلى 1 عدد الفترات الزمنية لتقييم أداء التنبؤ (خيار المعالجة 19). A.8.1 حساب التنبؤ عدد الفترات التي يجب تضمينها في الانحدار (خيار المعالجة 6 أ) 3 في هذا المثال بالنسبة لكل شهر من التوقعات، أضف الزيادة أو النقصان خلال الفترات المحددة قبل فترة الاستبقاء في الفترة السابقة. متوسط األشهر الثالثة السابقة) 114 119 137 (3 123.3333 ملخص األشهر الثالثة السابقة مع األخذ في االعتبار) 114 1 () 119 2 () 137 3 (763 الفرق بين القيم 763 - 123.3333) 1 2 3 (23 النسبة) 12 22 32) - 2 3 14 - 12 2 القيمة 1 الفرق الفارق 232 11.5 القيمة 2 المتوسط - القيمة 1 123.3333 - 11.5 2 100.3333 التوقعات (1) القيمة 1 القيمة 2 4 11.5 100.3333 146.333 أو 146 التوقعات 5 11.5 100.3333 157.8333 أو 158 التوقعات 6 11.5 100.3333 169.3333 أو 169 A.8.2 حساب التوقعات المحاكية مبيعات أكتوبر / تشرين الأول 2004: متوسط الأشهر الثلاثة السابقة (129 140 131) 3 133.3333 ملخص الأشهر الثلاثة السابقة مع اعتبار الوزن (129 1) (140 2) (131 3) 802 الفرق بين (1 2 3) 2 نسبة (12 22 32) - 2 3 14 - 12 2 القيمة 1 الفرق 22 22 1 القيمة 2 المتوسط - القيمة 1 133.3333 - 1 2 131.3333 التوقعات (1) القيمة 1 القيمة 2 4 1 131.3333 135.3333 نوفمبر 2004 مبيعات متوسط األشهر الثالثة السابقة) 140 131 114 (3 128.3333 ملخص األشهر الثالثة السابقة مع اعتبار الوزن) 140 1 () 131 2 () 114 3 (744 الفرق بين القيم 744 - 128.3333) 1 2 3 (- 25.9999 القيمة 1) الفرق - الفوائد -25.99992 -12.9999 القيمة 2 المتوسط - القيمة 1 128.3333 - (-12.9999) 2 154.3333 التوقعات 4 -12.9999 154.3333 102.3333 ديسمبر 2004 المبيعات متوسط الأشهر الثلاثة السابقة (131 114 119) 3 121.3333 ملخص الأشهر الثلاثة السابقة مع اعتبار الوزن ( 131 1) (114 2) (119 3) 716 الفرق بين القيم 716 - 121.3333 (1 2 3) -11.9999 القيمة 1 الفرق الفارق -11.99992 -5.9999 القيمة 2 متوسط - القيمة 1 121.3333 - (-5.9999) 2 133.3333 توقعات 4 (-5.9999 ) 133.3333 109.3333 A.8.3 النسبة المئوية لحساب تكلفة الشراء (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 حساب الانحراف المطلق (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 الطريقة 7 - الشركة السعودية d درجة التقريب يحدد الانحدار الخطي القيمتين a و b في صيغة التنبؤ Y a بكس بهدف تركيب خط مستقيم على بيانات تاريخ المبيعات. الدرجة الثانية تقريب مماثل. ومع ذلك، تحدد هذه الطريقة قيم a و b و c في صيغة التنبؤ Y بكس cX2 بهدف تركيب منحنى على بيانات سجل المبيعات. قد تكون هذه الطريقة مفيدة عندما يكون المنتج في مرحلة الانتقال بين مراحل دورة حياة. على سبيل المثال، عندما يتحرك منتج جديد من مرحلة مقدمة إلى مراحل النمو، قد يتسارع اتجاه المبيعات. بسبب مصطلح الترتيب الثاني، يمكن التنبؤ بسرعة الاقتراب اللانهاية أو انخفاض إلى الصفر (اعتمادا على ما إذا كان معامل ج إيجابي أو سلبي). ولذلك، فإن هذه الطريقة مفيدة فقط على المدى القصير. مواصفات التوقعات: الصيغ تجد a، b، c لتتناسب مع منحنى إلى ثلاث نقاط بالضبط. يمكنك تحديد n في خيار المعالجة 7a، وعدد الفترات الزمنية للبيانات لتتراكم في كل من النقاط الثلاث. في هذا المثال n 3. لذلك، يتم دمج بيانات المبيعات الفعلية للفترة من أبريل إلى يونيو في النقطة الأولى، Q1. يوليو إلى سبتمبر تضاف معا لخلق Q2، وأكتوبر خلال ديسمبر المبلغ إلى Q3. سيتم تركيب المنحنى على القيم الثلاثة Q1 و Q2 و Q3. تاريخ المبيعات المطلوب: 3 n فترات لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). عدد الفترات المراد تضمينها (الخيار 7 أ) 3 في هذا المثال استخدم الأشهر السابقة (3 n) في فدرات ثلاثة أشهر: Q1 (أبريل - يونيو) 125 122 137 384 Q2 (يوليو - سبتمبر) 129 140 131 400 Q3 ( أوكت - ديك) 114 119 137 370 تتضمن الخطوة التالية حساب المعاملات الثلاثة a و b و c التي سيتم استخدامها في صيغة التنبؤ Y بكس cX2 (1) Q1 a بكس cX2 (حيث X 1) أبك (2) Q2 (x 2) ب 2 c 3 (2) 4 ب 4 (3) Q3 بكس c2 (3) 3b 9c حل المعادلات الثلاث في وقت واحد لإيجاد b و a و c: طرح المعادلة (1) من المعادلة (2) (2) - (1) Q2 - Q1 b 3c استبدال هذه المعادلة ل b في المعادلة (3) (3) Q3 a 3 (Q2 - Q1) - 3c c وأخيرا، استبدل هذه المعادلات ل a و b إلى المعادلة (1) Q3 - 3 (Q2 - Q1) (Q2 - Q1) - 3c c Q1 c (Q3 - Q2) 2 طريقة تقريب الدرجة الثانية تحسب a و b و c على النحو التالي: Q3 - 3 (الربع الثاني - الربع الأول) 370 - 3 (400 - 384) 322 ج (الربع الثالث - الربع الثاني) 2 (370 - 400) (384 - 400) 2 -23 ب (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a بكس cX2 322 85X (-23) X2 كانون الثاني (يناير) توقعات مارس (X4): (322 340 - 368) 3 2943 98 (322 425 - 575) 3 57.333 أو 57 في الفترة من تموز / يوليه إلى أيلول / سبتمبر (X6): (322 510 - 828) 3 1.33 أو 1 في الفترة من تشرين الأول / أكتوبر إلى كانون الأول / ديسمبر (X7) (322) 595 - 11273 -70 A.9.2 حساب التوقعات المحاكاة مبيعات شهر أكتوبر ونوفمبر وديسمبر 2004: الربع الأول (يناير - مارس) 360 Q2 (أبريل - يونيو) 384 الربع الثالث (يوليو - سبتمبر) 400 400 - 3 (384 - 360) 328 ج (400 - 384) (360 - 384) 2 -4 ب (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 ألف - 9 - 3 النسبة المئوية لحساب حساب الدقة (136 136 136) (114 119 137) 100 110.27 A.9.4 حساب الانحراف المطلق المتوسط (136 - 114 136 - 119 136 - 137) 3 13.33 ألف - 10 الطريقة 8 - الطريقة المرنة إن الطريقة المرنة (النسبة المئوية خلال الأشهر السابقة) مماثلة للطريقة 1، النسبة المئوية عن العام الماضي. كلتا الطريقتين تضاعف بيانات المبيعات من فترة زمنية سابقة من قبل المستخدم المحدد عامل، ثم مشروع تلك النتيجة في المستقبل. في طريقة النسبة المئوية خلال العام الماضي، يستند الإسقاط إلى بيانات من نفس الفترة الزمنية في العام السابق. ويضيف الأسلوب المرن القدرة على تحديد فترة زمنية غير الفترة نفسها من العام الماضي لاستخدامها كأساس للحسابات. عامل الضرب. على سبيل المثال، حدد 1.15 في خيار المعالجة 8b لزيادة بيانات سجل المبيعات السابقة بمقدار 15. فترة الأساس. على سبيل المثال، سيؤدي n 3 إلى أن تستند التوقعات الأولى إلى بيانات المبيعات في أكتوبر / تشرين الأول 2005. الحد الأدنى من تاريخ المبيعات: يحدد المستخدم عدد الفترات التي تعود إلى فترة الأساس، بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التوقعات ( PBF). A.10.4 متوسط حساب الانحراف المطلق درهم (148 - 114 161 - 119 151 - 137) 3 30 A.11 الطريقة 9 - المتوسط المتحرك المتوسط يشبه أسلوب المتوسط المتحرك المتوسط (ويم) الطريقة 4، المتوسط المتحرك (ما). ومع ذلك، مع المتوسط المتحرك المرجح يمكنك تعيين الأوزان غير المتساوية إلى البيانات التاريخية. وتحسب الطريقة المتوسط المرجح لتاريخ المبيعات الأخير للوصول إلى إسقاط على المدى القصير. عادة ما يتم تعيين بيانات أكثر حداثة وزنا أكبر من البيانات القديمة، لذلك هذا يجعل وما أكثر استجابة للتحولات في مستوى المبيعات. ومع ذلك، لا يزال التحيز التنبؤي والأخطاء المنهجية تحدث عندما يظهر تاريخ مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة بدلا من المنتجات في مراحل النمو أو التقادم من دورة الحياة. n عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. على سبيل المثال، حدد n 3 في خيار المعالجة 9a لاستخدام أحدث ثلاث فترات كأساس للتوقعات في الفترة الزمنية التالية. قيمة كبيرة ل n (مثل 12) يتطلب المزيد من المبيعات التاريخ. فإنه يؤدي إلى توقعات مستقرة، ولكن سيكون بطيئا في التعرف على التحولات في مستوى المبيعات. من ناحية أخرى، فإن قيمة صغيرة ل n (مثل 3) سوف تستجيب أسرع للتحولات في مستوى المبيعات، ولكن التوقعات قد تتقلب على نطاق واسع بحيث أن الإنتاج لا يمكن أن تستجيب لهذه الاختلافات. الوزن المخصص لكل فترة من فترات البيانات التاريخية. يجب أن يبلغ إجمالي الأوزان المخصصة 1.00. على سبيل المثال، عندما n 3، تعيين أوزان 0،6 و 0،3 و 0،1، مع أحدث البيانات تلقي أكبر وزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 الطريقة 10 - التمهيد الخطي تشبه هذه الطريقة الطريقة 9، المتوسط المتحرك المرجح (وما). ومع ذلك، بدلا من تعيين تعسفي للأوزان للبيانات التاريخية، يتم استخدام صيغة لتعيين الأوزان التي تنخفض خطيا ويجمع إلى 1.00. ثم تحسب الطريقة المتوسط المرجح لتاريخ المبيعات الأخير للتوصل إلى إسقاط على المدى القصير. وكما هو الحال بالنسبة لجميع تقنيات التنبؤ المتوسط المتحرك الخطي، يحدث التحيز المتوقع والأخطاء المنهجية عندما يظهر سجل مبيعات المنتجات اتجاها قويا أو أنماطا موسمية. هذا الأسلوب يعمل بشكل أفضل للتنبؤات قصيرة المدى من المنتجات الناضجة بدلا من المنتجات في مراحل النمو أو التقادم من دورة الحياة. n عدد الفترات من تاريخ المبيعات لاستخدامها في حساب التوقعات. وهذا محدد في خيار المعالجة 10 أ. على سبيل المثال، حدد n 3 في خيار المعالجة 10b لاستخدام أحدث ثلاث فترات كأساس للتوقعات في الفترة الزمنية التالية. سيقوم النظام تلقائيا بتعيين الأوزان إلى البيانات التاريخية التي تنخفض خطيا ويجمع إلى 1.00. على سبيل المثال، عندما n 3، سيقوم النظام بتعيين أوزان 0.5، 0.3333، 0.1، مع أحدث البيانات التي تتلقى أكبر وزن. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). A.12.1 حساب التنبؤ عدد الفترات التي يجب تضمينها في متوسط التمهيد (خيار المعالجة 10 أ) 3 في هذا المثال النسبة لفترة واحدة قبل 3 (n2 n) 2 3 (32 3) 2 36 0.5 نسبة لفترتين قبل 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. نسبة ثلاث فترات قبل 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. توقعات يناير: 137 0.5 119 13 114 16 127.16 أو 127 توقعات فبراير: 127 0.5 137 13 119 16 129 توقعات آذار / مارس: 129 0.5 127 13 137 16 129.666 أو 130 ألف-12-2 حساب التوقعات المحاكاة مبيعات تشرين الأول / أكتوبر 2004 129 16 140 26 131 36 133.6666 تشرين الثاني / نوفمبر 2004 المبيعات 140 16 131 26 114 36 124 كانون الأول / ديسمبر 2004 المبيعات 131 16 114 26 119 36 119.3333 A.12.3 النسبة المئوية لحساب حساب الدقة (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 متوسط حساب الانحراف المطلق (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 الطريقة 11 - التجانس الأسي تشبه هذه الطريقة الطريقة 10، التنعيم الخطي. في الخطي تمهيد النظام يعين الأوزان إلى البيانات التاريخية التي تنخفض خطيا. في التجانس الأسي، يعين النظام الأوزان التي تسوس أضعافا مضاعفة. معادلة التنبؤ بالتمهيد الأسي هي: التوقعات (المبيعات الفعلية السابقة) (1 - a) التوقعات السابقة التوقعات هي المتوسط المرجح للمبيعات الفعلية من الفترة السابقة والتوقعات من الفترة السابقة. a هو الوزن المطبق على المبيعات الفعلية للفترة السابقة. (1-a) هو الوزن المطبق على توقعات الفترة السابقة. القيم الصالحة لنطاق من 0 إلى 1، وعادة ما تقع بين 0.1 و 0.4. مجموع الأوزان هو 1.00. a (1 - a) 1 يجب أن تعين قيمة ثابت التمهيد، a. إذا لم تقم بتعيين قيم ثابت التجانس، يقوم النظام بحساب قيمة مفترضة استنادا إلى عدد فترات سجل المبيعات المحددة في خيار المعالجة 11a. وهو ثابت التمهيد المستخدم في حساب المتوسط الميسر للمستوى العام أو حجم المبيعات. القيم الصالحة لنطاق من 0 إلى 1. n نطاق بيانات سجل المبيعات لتضمينها في الحسابات. عموما سنة واحدة من بيانات تاريخ المبيعات غير كافية لتقدير المستوى العام للمبيعات. على سبيل المثال، تم اختيار قيمة صغيرة ل n (n 3) من أجل تقليل الحسابات اليدوية المطلوبة للتحقق من النتائج. ويمكن أن يؤدي التمهيد الأسي إلى توليد توقعات تستند إلى أقل من نقطة بيانات تاريخية واحدة. الحد الأدنى المطلوب لسجل المبيعات: n بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). ألف - 13 - 1 حساب التنبؤ عدد الفترات المراد إدراجها في متوسط التمهيد (الخيار 11 أ) 3 و عامل ألفا (خيار المعالجة 11 ب) فارغا في هذا المثال عاملا لأقدم بيانات المبيعات 2 (11) أو 1 عند تحديد ألفا (12) أو ألفا عندما يتم تحديد ألفا عاملا ل 3 أقدم بيانات المبيعات 2 (13) أو ألفا عندما يتم تحديد ألفا عاملا لأحدث بيانات المبيعات 2 (1n) ، أو ألفا عندما يتم تحديد ألفا نوفمبر سم. متوسط أ (أكتوبر الفعلي) (1 - أ) أكتوبر سم. متوسط 1 114 0 0 114 ديسمبر سم. متوسط أ (نوفمبر الفعلي) (1 - أ) نوفمبر سم. متوسط 23 119 13 114 117.3333 كانون الثاني / يناير التوقعات (كانون الأول / ديسمبر الفعلي) (1 - أ) كانون الأول / ديسمبر سم. متوسط 24 137 24 117.3333 127.16665 أو 127 توقعات شباط / فبراير توقعات كانون الثاني / يناير 127 توقعات آذار / مارس توقعات كانون الثاني / يناير 127 ألف-13-2 حساب التوقعات المحاكاة تموز / يوليه 2004. متوسط 22 129 129 أوغست سم. متوسط 23 140 13 129 136.3333 سيبتمبر سم. متوسط 24 131 24 136.3333 133.6666 أكتوبر، 2004 مبيعات سيب سم. متوسط 133.6666 أوغست، 2004 سم. متوسط 22 140 140 سيبتمبر سم. متوسط 23 131 13 140 134 أكتوبر سم. متوسط 24 114 24 134 124 نوفمبر، 2004 المبيعات سيب سم. متوسط 124 سبتمبر 2004 سم. متوسط 22 131 131 أكتوبر سم. متوسط 23 114 13 131 119.6666 نوفمبر سم. متوسط 24 119 24 119.6666 119.3333 ديسمبر 2004 مبيعات سيب سم. متوسط 119.3333 A.13.3 النسبة المئوية لحساب حساب الدقة (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 متوسط حساب الانحراف المطلق (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 الطريقة 12 - التماسك الأسي مع الاتجاه والموسمية هذا الأسلوب مشابه لطريقة 11، الأسي تمهيد في أن يتم حساب متوسط سلسة. ومع ذلك، تتضمن الطريقة 12 أيضا مصطلحا في معادلة التنبؤ لحساب اتجاه سلس. وتتكون التنبؤات من سلسة متوسطة تم تعديلها لاتجاه خطي. عندما يتم تحديده في خيار المعالجة، يتم تعديل التوقعات أيضا للموسمية. وهو ثابت التمهيد المستخدم في حساب المتوسط الميسر للمستوى العام أو حجم المبيعات. القيم الصالحة لمدى ألفا تتراوح بين 0 و 1. b ثابت التمهيد المستخدم في حساب المتوسط الميسر لعنصر الاتجاه للتنبؤ. القيم الصالحة للنطاق بيتا من 0 إلى 1. ما إذا كان المؤشر الموسمي يتم تطبيقه على التوقعات a و b مستقلان عن بعضهما البعض. ليس لديهم لإضافة إلى 1.0. الحد الأدنى المطلوب من تاريخ المبيعات: عامين بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (بف). تستخدم الطريقة 12 معادلتين أسيتين للتمهيد ومتوسط بسيط واحد لحساب المتوسط السلس، واتجاه سلس، ومتوسط عامل موسمي بسيط. A.14.1 حساب التنبؤ A) متوسط ممسود أضعافا مطردا (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 تقييم التنبؤات يمكنك اختيار طرق التنبؤ لتوليد ما يصل إلى اثني عشر تنبؤا لكل منتج. ومن المحتمل أن تؤدي كل طريقة للتنبؤ إلى إسقاط مختلف قليلا. عندما يتم توقع الآلاف من المنتجات، فمن غير العملي لاتخاذ قرار شخصي بشأن أي من التوقعات لاستخدامها في خططك لكل من المنتجات. يقوم النظام تلقائيا بتقييم الأداء لكل من طرق التنبؤ التي تحددها، ولكل من توقعات المنتجات. يمكنك الاختيار بين معيارين للأداء، يعني الانحراف المطلق (ماد) ونسبة الدقة (بوا). ماد هو مقياس لخطأ التنبؤ. بوا هو مقياس للتحيز المتوقع. يتطلب كل من تقنيات تقييم الأداء هذه بيانات تاريخ المبيعات الفعلية لمستخدم محدد الفترة الزمنية. وتسمى هذه الفترة من التاريخ الحديث فترة الانتظار أو الفترات الأنسب (بف). ولقياس أداء طريقة التنبؤ، استخدم الصيغ المتوقعة لمحاكاة توقعات لفترة الاستحقاق التاريخية. وستكون هناك عادة اختلافات بين بيانات المبيعات الفعلية والتوقعات المحاكية لفترة الاستبعاد. عند اختيار طرق التنبؤ متعددة، تحدث هذه العملية نفسها لكل طريقة. يتم احتساب توقعات متعددة لفترة الاستحواذ، وبالمقارنة مع تاريخ المبيعات المعروفة لنفس الفترة من الزمن. ويوصى باستخدام طريقة التنبؤ التي تنتج أفضل مطابقة (أفضل ملاءمة) بين التوقعات والمبيعات الفعلية خلال فترة الاستبعاد لاستخدامها في خططك. هذه التوصية خاصة بكل منتج، وقد تتغير من جيل واحد إلى آخر. ألف - 16 الانحراف المطلق (ماد) هو المتوسط (أو المتوسط) للقيم المطلقة (أو الحجم) للانحرافات (أو الأخطاء) بين البيانات الفعلية والمتوقعة. ماد هو مقياس لمتوسط حجم الأخطاء المتوقع، نظرا لطريقة التنبؤ وتاريخ البيانات. ولأن القيم المطلقة تستخدم في الحساب، فإن الأخطاء الإيجابية لا تلغي الأخطاء السلبية. عند مقارنة عدة طرق التنبؤ، واحدة مع أصغر درهم أظهرت أن تكون الأكثر موثوقية لهذا المنتج لفترة تلك الانتظار. وعندما تكون التنبؤات غير متحيزة وتوزع الأخطاء عادة، توجد علاقة رياضية بسيطة بين تدبيرين عاديين ومقياسين آخرين للتوزيع والانحراف المعياري ومتوسط الخطأ المربعة: A.16.1 نسبة الدقة (بوا) نسبة الدقة (بوا) هي وهو مقياس للتحيز المتوقع. وعندما تكون التوقعات مرتفعة جدا، تتراكم المخزونات وتزداد تكاليف الحصر. وعندما تكون التنبؤات منخفضة باستمرار، تستهلك المخزونات وتنخفض خدمة العملاء. توقعات أن 10 وحدات منخفضة جدا، ثم 8 وحدات مرتفعة جدا، ثم 2 وحدة عالية جدا، سيكون توقعات غير متحيزة. يتم إلغاء الخطأ الإيجابي من 10 من قبل أخطاء سلبية من 8 و 2. خطأ الفعلي - توقعات عندما يمكن تخزين المنتج في المخزون، وعندما توقعات غير منحازة، يمكن استخدام كمية صغيرة من مخزون السلامة لتخفيف الأخطاء. في هذه الحالة، ليس من المهم جدا للقضاء على أخطاء التنبؤ كما هو لتوليد توقعات غير منحازة. ولكن في الصناعات الخدمية، فإن الحالة المذكورة أعلاه سوف ينظر إليها على أنها ثلاثة أخطاء. وستعاني هذه الخدمة من نقص في عدد الموظفين في الفترة الأولى، ثم ستزداد أعداد الموظفين في الفترتين التاليتين. وفي الخدمات، يكون حجم أخطاء التنبؤ عادة أكثر أهمية مما هو متوقع. ويتيح الجمع خلال فترة الاستبعاد أخطاء إيجابية لإلغاء الأخطاء السلبية. عندما يتجاوز إجمالي المبيعات الفعلية مجموع المبيعات المتوقعة، ونسبة أكبر من 100. وبطبيعة الحال، فإنه من المستحيل أن يكون أكثر من 100 دقيقة. عندما تكون التوقعات غير منحازة، فإن نسبة بوا ستكون 100. ولذلك، فمن المستحسن أن يكون 95 دقيقة من أن تكون دقيقة 110. تحدد معايير بوا طريقة التنبؤ التي لديها نسبة بوا الأقرب إلى 100. يؤدي البرنامج النصي في هذه الصفحة إلى تحسين التنقل في المحتوى، ولكنه لا يغير المحتوى بأي شكل من الأشكال (3). فهم مستويات وأساليب التنبؤ يمكنك إنشاء توقعات تفصيلية (عنصر واحد) وتوقعات (خط الانتاج) التي تعكس أنماط الطلب على المنتجات. ويقوم النظام بتحليل المبيعات السابقة لحساب التوقعات باستخدام 12 طريقة للتنبؤ. وتشمل التوقعات معلومات تفصيلية على مستوى البند ومعلومات أعلى مستوى عن فرع أو الشركة ككل. 3.1 معايير تقييم أداء التوقعات اعتمادا على اختيار خيارات المعالجة وعلى الاتجاهات والأنماط في بيانات المبيعات، فإن بعض أساليب التنبؤ تؤدي أداء أفضل من غيرها بالنسبة لمجموعة بيانات تاريخية معينة. قد لا تكون طريقة التنبؤ المناسبة لمنتج واحد مناسبة لمنتج آخر. قد تجد أن طريقة التنبؤ التي توفر نتائج جيدة في مرحلة واحدة من دورة حياة المنتج لا تزال مناسبة طوال دورة الحياة بأكملها. يمكنك الاختيار بين طريقتين لتقييم الأداء الحالي لطرق التنبؤ: النسبة المئوية للدقة (بوا). متوسط الانحراف المطلق (درهم). تتطلب كل من طرق تقييم الأداء هذه بيانات مبيعات سابقة لفترة تحددها. وتسمى هذه الفترة فترة الانتظار أو فترة من أفضل ملاءمة. وتستخدم البيانات في هذه الفترة كأساس للتوصية باستخدام طريقة التنبؤ في وضع توقعات التوقعات التالية. هذه التوصية خاصة بكل منتج ويمكن أن تتغير من جيل واحد إلى آخر. 3.1.1 أفضل ملاءمة يوصى النظام بأفضل توقعات مناسبة من خلال تطبيق أساليب التنبؤ المحددة على تاريخ طلب المبيعات السابق ومقارنة محاكاة التنبؤ بالتاريخ الفعلي. عندما تقوم بتوليد توقعات أفضل مناسبة، يقارن النظام تواريخ أوامر المبيعات الفعلية للتنبؤات لفترة زمنية محددة ويحسب مدى دقة كل طريقة تنبؤ مختلفة توقعت المبيعات. ثم يوصي النظام التنبؤ الأكثر دقة كما الأنسب. ويوضح هذا الرسم البياني أفضل التنبؤات: الشكل 3-1 أفضل التنبؤات المناسبة يستخدم النظام هذا التسلسل من الخطوات لتحديد أفضل ملاءمة: استخدم كل طريقة محددة لمحاكاة توقعات لفترة الاستبقاء. قارن المبيعات الفعلية بالتنبؤات المحاكية لفترة الاستبعاد. احسب بوا أو ماد لتحديد طريقة التنبؤ التي تتطابق بشكل وثيق مع المبيعات الفعلية السابقة. يستخدم النظام إما بوا أو درهم، استنادا إلى خيارات المعالجة التي تحددها. التوصية بتوقعات أفضل من قبل بوا التي هي الأقرب إلى 100 في المئة (أكثر أو أقل) أو درهم الذي هو الأقرب إلى الصفر. 3.2 طرق التنبؤ جد إدواردز إنتربريسون إدارة التنبؤات تستخدم 12 طريقة للتنبؤ الكمي وتشير إلى الطريقة التي توفر أفضل ملاءمة لحالة التنبؤ. يناقش هذا القسم: الطريقة 1: النسبة المئوية عن العام الماضي. الطريقة الثانية: النسبة المئوية المحسوبة خلال العام الماضي. الطريقة الثالثة: السنة الماضية لهذا العام. الطريقة الرابعة: المتوسط المتحرك. الطريقة 5: التقريب الخطي. الطريقة 6: أقل المربعات الانحدار. الطريقة 7: الدرجة الثانية التقريب. الطريقة الثامنة: الطريقة المرنة. الطريقة التاسعة: المتوسط المتحرك المرجح. طريقة 10: خطي تجانس. طريقة 11: الأسي تمهيد. طريقة 12: الأسي تمهيد مع الاتجاه والموسمية. حدد الطريقة التي تريد استخدامها في خيارات المعالجة لبرنامج توليد التوقعات (R34650). معظم هذه الطرق توفر رقابة محدودة. على سبيل المثال، يمكن تحديد الوزن الذي تم وضعه على البيانات التاريخية الحديثة أو النطاق الزمني للبيانات التاريخية المستخدمة في الحسابات من قبلك. وتشير الأمثلة الواردة في الدليل إلى طريقة الحساب لكل طريقة من طرق التنبؤ المتاحة، بالنظر إلى مجموعة متطابقة من البيانات التاريخية. تستخدم أمثلة الطريقة في الدليل جزءا أو كل مجموعات البيانات هذه، وهي بيانات تاريخية من العامين الماضيين. وتذهب التوقعات المتوقعة إلى العام المقبل. هذه البيانات تاريخ المبيعات مستقرة مع الزيادات الموسمية الصغيرة في شهري يوليو وديسمبر. هذا النمط هو سمة من المنتجات الناضجة التي قد تقترب من التقادم. 3.2.1 الطريقة 1: النسبة المئوية في السنة الماضية تستخدم هذه الطريقة صيغة النسبة المئوية خلال السنة الماضية لمضاعفة كل فترة توقع بنسبة الزيادة أو النقصان المحددة المئوية. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات لأفضل صالح بالإضافة إلى سنة واحدة من تاريخ المبيعات. هذه الطريقة مفيدة للتنبؤ بالطلب على الأصناف الموسمية مع النمو أو الانخفاض. 3.2.1.1 مثال: الطريقة الأولى: النسبة المئوية خلال السنة الماضية تضاعف صيغة النسبة المئوية من صيغة العام الماضي بيانات المبيعات عن العام السابق بعامل تحدده ثم المشاريع التي ينتج عنها العام التالي. قد تكون هذه الطريقة مفيدة في وضع الميزانيات لمحاكاة تأثير معدل نمو محدد أو عندما يكون تاريخ المبيعات مكونا موسميا هاما. مواصفات التنبؤ: عامل الضرب. على سبيل المثال، حدد 110 في خيار المعالجة لزيادة بيانات سجل مبيعات السنوات السابقة بنسبة 10٪. سجل المبيعات المطلوب: سنة واحدة لحساب التوقعات، بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤ (فترات أفضل ملاءمة) التي تحددها. هذا الجدول هو التاريخ المستخدم في حساب التنبؤات: توقعات فبراير تساوي 117 مرة 1.1 128.7 مقربة إلى 129. توقعات مارس تساوي 115 مرة 1.1 126.5 مقربة إلى 127. 3.2.2 الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية تستخدم هذه الطريقة النسبة المحسوبة صيغة العام الماضي لمقارنة المبيعات السابقة لفترات محددة للمبيعات من نفس الفترات من العام السابق. ويحدد النظام نسبة مئوية من الزيادة أو النقصان، ثم يضاعف كل فترة حسب النسبة المئوية لتحديد التوقعات. للتنبؤ الطلب، وهذا الأسلوب يتطلب عدد من فترات من تاريخ النظام المبيعات بالإضافة إلى سنة واحدة من تاريخ المبيعات. وهذه الطريقة مفيدة للتنبؤ بالطلب على المدى القصير على الأصناف الموسمية مع النمو أو الانخفاض. 3.2.2.1 مثال: الطريقة الثانية: النسبة المئوية المحسوبة خلال السنة الماضية النسبة المئوية المحسوبة خلال صيغة السنة الماضية تضاعف بيانات المبيعات عن السنة السابقة بعامل يتم حسابه من قبل النظام، ومن ثم يقوم بتشغيل تلك النتيجة للعام التالي. قد يكون هذا الأسلوب مفيدا في إسقاط تأثير توسيع معدل النمو الأخير للمنتج في العام المقبل مع الحفاظ على نمط موسمي موجود في تاريخ المبيعات. مواصفات التوقعات: مجموعة من تاريخ المبيعات لاستخدامها في حساب معدل النمو. على سبيل المثال، حدد n يساوي 4 في خيار المعالجة لمقارنة سجل المبيعات للفترات الأربع الأخيرة بتلك الفترات الأربع نفسها من العام السابق. استخدام نسبة المحسوبة لجعل الإسقاط للعام المقبل. تاريخ المبيعات المطلوب: سنة واحدة لحساب التوقعات بالإضافة إلى عدد الفترات الزمنية المطلوبة لتقييم أداء التنبؤات (فترات أفضل ملاءمة). This table is history used in the forecast calculation, given n 4: February forecast equals 117 times 0.9766 114.26 rounded to 114. March forecast equals 115 times 0.9766 112.31 rounded to 112. 3.2.3 Method 3: Last Year to This Year This method uses last years sales for the next years forecast. To forecast demand, this method requires the number of periods best fit plus one year of sales order history. This method is useful to forecast demand for mature products with level demand or seasonal demand without a trend. 3.2.3.1 Example: Method 3: Last Year to This Year The Last Year to This Year formula copies sales data from the previous year to the next year. This method might be useful in budgeting to simulate sales at the present level. The product is mature and has no trend over the long run, but a significant seasonal demand pattern might exist. Forecast specifications: None. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals January of last year with a forecast value of 128. February forecast equals February of last year with a forecast value of 117. March forecast equals March of last year with a forecast value of 115. 3.2.4 Method 4: Moving Average This method uses the Moving Average formula to average the specified number of periods to project the next period. You should recalculate it often (monthly, or at least quarterly) to reflect changing demand level. To forecast demand, this method requires the number of periods best fit plus the number of periods of sales order history. This method is useful to forecast demand for mature products without a trend. 3.2.4.1 Example: Method 4: Moving Average Moving Average (MA) is a popular method for averaging the results of recent sales history to determine a projection for the short term. The MA forecast method lags behind trends. Forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products that are in the growth or obsolescence stages of the life cycle. Forecast specifications: n equals the number of periods of sales history to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) is quicker to respond to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. Required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: February forecast equals (114 119 137 125) 4 123.75 rounded to 124. March forecast equals (119 137 125 124) 4 126.25 rounded to 126. 3.2.5 Method 5: Linear Approximation This method uses the Linear Approximation formula to compute a trend from the number of periods of sales order history and to project this trend to the forecast. You should recalculate the trend monthly to detect changes in trends. This method requires the number of periods of best fit plus the number of specified periods of sales order history. This method is useful to forecast demand for new products, or products with consistent positive or negative trends that are not due to seasonal fluctuations. 3.2.5.1 Example: Method 5: Linear Approximation Linear Approximation calculates a trend that is based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution because long range forecasts are leveraged by small changes in just two data points. Forecast specifications: n equals the data point in sales history that is compared to the most recent data point to identify a trend. For example, specify n 4 to use the difference between December (most recent data) and August (four periods before December) as the basis for calculating the trend. Minimum required sales history: n plus 1 plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast December of past year 1 (Trend) which equals 137 (1 times 2) 139. February forecast December of past year 1 (Trend) which equals 137 (2 times 2) 141. March forecast December of past year 1 (Trend) which equals 137 (3 times 2) 143. 3.2.6 Method 6: Least Squares Regression The Least Squares Regression (LSR) method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data so that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future. This method requires sales data history for the period that is represented by the number of periods best fit plus the specified number of historical data periods. The minimum requirement is two historical data points. This method is useful to forecast demand when a linear trend is in the data. 3.2.6.1 Example: Method 6: Least Squares Regression Linear Regression, or Least Squares Regression (LSR), is the most popular method for identifying a linear trend in historical sales data. The method calculates the values for a and b to be used in the formula: This equation describes a straight line, where Y represents sales and X represents time. Linear regression is slow to recognize turning points and step function shifts in demand. Linear regression fits a straight line to the data, even when the data is seasonal or better described by a curve. When sales history data follows a curve or has a strong seasonal pattern, forecast bias and systematic errors occur. Forecast specifications: n equals the periods of sales history that will be used in calculating the values for a and b. For example, specify n 4 to use the history from September through December as the basis for the calculations. When data is available, a larger n (such as n 24) would ordinarily be used. LSR defines a line for as few as two data points. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Minimum required sales history: n periods plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: March forecast equals 119.5 (7 times 2.3) 135.6 rounded to 136. 3.2.7 Method 7: Second Degree Approximation To project the forecast, this method uses the Second Degree Approximation formula to plot a curve that is based on the number of periods of sales history. This method requires the number of periods best fit plus the number of periods of sales order history times three. This method is not useful to forecast demand for a long-term period. 3.2.7.1 Example: Method 7: Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a b X with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar, but this method determines values for a, b, and c in the this forecast formula: Y a b X c X 2 The objective of this method is to fit a curve to the sales history data. This method is useful when a product is in the transition between life cycle stages. For example, when a new product moves from introduction to growth stages, the sales trend might accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). This method is useful only in the short term. Forecast specifications: the formula find a, b, and c to fit a curve to exactly three points. You specify n, the number of time periods of data to accumulate into each of the three points. In this example, n 3. Actual sales data for April through June is combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve is fitted to the three values Q1, Q2, and Q3. Required sales history: 3 times n periods for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (May) (Jun) which equals 125 122 137 384 Q2 (Jul) (Aug) (Sep) which equals 140 129 131 400 Q3 (Oct) (Nov) (Dec) which equals 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a b X c X 2 . Q1, Q2, and Q3 are presented on the graphic, where time is plotted on the horizontal axis. Q1 represents total historical sales for April, May, and June and is plotted at X 1 Q2 corresponds to July through September Q3 corresponds to October through December and Q4 represents January through March. This graphic illustrates the plotting of Q1, Q2, Q3, and Q4 for second degree approximation: Figure 3-2 Plotting Q1, Q2, Q3, and Q4 for second degree approximation Three equations describe the three points on the graph: (1) Q1 a bX cX 2 where X 1(Q1 a b c) (2) Q2 a bX cX 2 where X 2(Q2 a 2b 4c) (3) Q3 a bX cX 2 where X 3(Q3 a 3b 9c) Solve the three equations simultaneously to find b, a, and c: Subtract equation 1 (1) from equation 2 (2) and solve for b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitute this equation for b into equation (3): (3) Q3 a 3(Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3(Q2 ndash Q1) Finally, substitute these equations for a and b into equation (1): (1)Q3 ndash 3(Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 ndash 3(Q2 ndash Q1) 370 ndash 3(400 ndash 384) 370 ndash 3(16) 322 b (Q2 ndash Q1) ndash3c (400 nda sh 384) ndash (3 times ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 This is a calculation of second degree approximation forecast: Y a bX cX 2 322 85X (ndash23) (X 2 ) When X 4, Q4 322 340 ndash 368 294. The forecast equals 294 3 98 per period. When X 5, Q5 322 425 ndash 575 172. The forecast equals 172 3 58.33 rounded to 57 per period. When X 6, Q6 322 510 ndash 828 4. The forecast equals 4 3 1.33 rounded to 1 per period. This is the forecast for next year, Last Year to This Year: 3.2.8 Method 8: Flexible Method This method enables you to select the best fit number of periods of sales order history that starts n months before the forecast start date, and to apply a percentage increase or decrease multiplication factor with which to modify the forecast. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base. Depending on what you select as n, this method requires periods best fit plus the number of periods of sales data that is indicated. This method is useful to forecast demand for a planned trend. 3.2.8.1 Example: Method 8: Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a factor specified by you, and then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. You can also use the Flexible Method to specify a time period, other than the same period in the last year, to use as the basis for the calculations. Multiplication factor. For example, specify 110 in the processing option to increase previous sales history data by 10 percent. Base period. For example, n 4 causes the first forecast to be based on sales data in September of last year. Minimum required sales history: the number of periods back to the base period plus the number of time periods that is required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.9 Method 9: Weighted Moving Average The Weighted Moving Average formula is similar to Method 4, Moving Average formula, because it averages the previous months sales history to project the next months sales history. However, with this formula you can assign weights for each of the prior periods. This method requires the number of weighted periods selected plus the number of periods best fit data. Similar to Moving Average, this method lags behind demand trends, so this method is not recommended for products with strong trends or seasonality. This method is useful to forecast demand for mature products with demand that is relatively level. 3.2.9.1 Example: Method 9: Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, you can assign unequal weights to the historical data when using WMA. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so WMA is more responsive to shifts in the level of sales. However, forecast bias and systematic errors occur when the product sales history exhibits strong trends or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. The number of periods of sales history (n) to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The total number of periods for the processing option rdquo14 - periods to includerdquo should not exceed 12 months. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Weighted Moving Average Forecast and MAD in EXCEL The problem states that the manager of the Carpet City outlet needs to make an accurate forecast of the demand for Soft Shag carpet (it biggest seller). If the manager does not order enough carpet from the carpet mill, customers will buy their carpet from one of Carpet City many competitors. The manager has collected the following demand data for the past eight month Month Demand for Soft Shag Carpet 1,000 yd 1 8 2 12 3 7 4 9 5 15 6 11 7 10 8 12 Compute a 3 month moving average forecast for month 4 through 9 Compute a weighed 3 month moving average forecast for months 4 through 9. Assign weights of .53. 33,and .12 to the month in sequence, starting with the most recent month. Compare the two forecast by using MAD, which forecast appears to be more accurate. Solution Preview Please refer to the attachment Solution. xlsx for the working and. Solution Summary A 3 Month Moving Average Forecast and another 3 Month Weighted Moving Average Forecast, using different smoothingweighing factors, has been performed in Excel. Forecast Error (MAD) has been calculated and the two forecasts has been compared using these MAD values. Add Solution to Cart Remove from Cart
Comments
Post a Comment